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A COMPARATIVE STUDY OF CNN, LSTM, BiLSTM, AND GRU 

ARCHITECTURES FOR TOOL WEAR PREDICTION IN MILLING PROCESSES 

Accurately predicting machine tool wear requires models capable of capturing complex, nonlinear interactions in 

multivariate time series inputs. Recurrent neural networks (RNNs) are well-suited to this task, owing to their 

memory mechanisms and capacity to construct highly complex models. In particular, LSTM, BiLSTM, and GRU 

architectures have shown promise in wear prediction. This study demonstrates that RNNs can automatically extract 

relevant information from time series data, resulting in highly precise wear models with minimal feature 

engineering. Notably, this approach avoids the need for excessively large window sizes of data points during model 

training, which would increase model complexity and processing time. Instead, this study proposes a procedure 

that achieves low prediction errors with window sizes as small as 100 data points. By employing Bayesian 

hyperparameter optimization and two preprocessing techniques (detrend and offset), RMSE errors consistently fall 

below 10. A key difference in this study is the use of boxplots to provide a better representation of result variability, 

as opposed to solely reporting the best values. The proposed approach matches more complex state-of-the-art 

methods and offers a powerful tool for wear prediction in engineering applications. 

1. INTRODUCTION 

 Machine tools are essential for shaping solid workpieces, particularly those made  

of metal. Cutting tools play a crucial role in the milling process [1], but their wear increases 

with use due to various thermomechanical factors that they encounter [2]. Tool wear is a 

major contributor to machine tool downtime, accounting for up to 20% of such instances [3]. 

Dull or damaged cutters can negatively impact surface quality and result in unplanned 

downtime [4], [5] which can significantly increase manufacturing costs [6]. To address this 

issue, implementing an accurate and reliable Tool Condition Monitoring (TCM) system has 

been suggested. Such a system can help reduce costs by 10% to 40% and extend the useful 

life of milling tools by minimizing downtime [7]. Failure to monitor tool wear and 

accumulated damage can lead to tool breakage, accounting for 7% to 20% of total milling 
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machine downtime [3, 7, 8]. Additionally, tool changes represent 3% to 12% of total 

processing costs [9]. Predicting tool wear in manufacturing processes with accuracy can lead 

to a range of benefits, including reduced costs, improved product quality, environmental 

gains, and enhanced worker safety. Additionally, accurate prediction can provide a compete-

tive advantage in the marketplace [10]. 

Machining processes have been extensively studied, utilizing both direct and indirect 

monitoring methods [11]. Direct monitoring methods employ optical microscopes and image 

processing software, offering high measurement precision under ideal operating conditions 

[12]. However, these methods incur high costs due to the equipment required and the accuracy 

of the measurement can be impacted by the presence of cutting fluid and chips on the cutting 

tool surface [13, 14]. Indirect monitoring methods, in contrast, estimate cutting tool wear 

based on signals measured by one or more sensors. These signals may include force on the 

spindle, vibrations, motor current, and acoustic emission. By processing the corresponding 

time series, relevant features can be extracted, which can indicate the health state of the 

machine tool. 

Over the past few years, significant advances have been made in applying deep learning 

methods to predict machine tool wear [15]. Deep learning is known for its ability to extract 

hierarchical representations from input data by constructing deep neural networks with 

multiple layers of nonlinear transformations. Various deep learning models have been 

developed, including denoising auto-encoder [16], bi-directional long short-term memory 

(BiLSTM) [17], transformer-based neural network [18], convolutional long short-term 

memory (ConvLSTM) [19, 20], gated recurrent units (GRUs) [21–23], among others. 

Various published works have utilized deep learning algorithms trained on features 

extracted from time series measurements. The studies discussed below draw upon data from 

the 2010 PHM data challenge, where features were extracted from time and frequency 

domains. Time domain features such as RMS, variance, maximum, skewness, kurtosis, and 

peak-to-peak were extracted, alongside frequency domain features including spectral 

asymmetry, kurtosis, and spectral power. Researchers developed a bi-directional GRU 

network, which was applied to a locally extracted feature sequence, resulting in RMSE values 

of 5.4, 8.3, and 8.2 for datasets c1, c4, and c6, respectively [22]. Additionally, a deep 

heterogeneous GRU model was implemented, achieving RMSE values of 4.66, 8.73, and 6.94 

for datasets c1, c4, and c6, respectively [21]. A physics-guided GRU model was also used, 

producing RMSE values of 5.009, 9.581, and 8.66 for datasets c1, c4, and c6, respectively 

[24]. Finally, a transformer-based neural network was trained for maximum wear prediction, 

yielding RMSE values of 6.116 and 9.553 for datasets c1 and c6, respectively [18]. 

In contrast to the studies mentioned above, some research works in deep learning 

networks utilize data without prior processing. The following papers also draw upon data 

from the 2010 PHM data challenge. A long-short term memory network (LSTM) model was 

developed to predict mean wear and obtained RMSE values of 12.1, 10.2, and 18.9 for 

datasets c1, c4, and c6, respectively [25]. Additionally, a time-distributed convolutional long-

short term memory model (TDConvLSTM) was implemented to predict mean tool wear 

directly from raw multi-sensor time series data, achieving RMSE values of 8.33, 8.39, and 

10.22 for datasets c1, c4, and c6, respectively [19]. A parallel convolutional neural network 

(PCNN), a deep residual network (DRN), and a bi-directional long-short term memory 
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network (Bi-LSTM) were integrated to predict mean flank wear, resulting in RMSE values  

of 7.67, 7.84, and 8.6 for datasets c1, c4, and c6, respectively [26]. Convolutional bi-

directional long-short term memory (CBLSTM) models were also used, where the 

convolutional component extracted local features representative of the sequential input, and 

a bi-directional LSTM encoded temporal information. A CBLSTM model was able to predict 

maximum tool wear based on raw sensory data of length 100 data points, with RMSE values 

of 10.8, 8.7, and 9.8 for datasets c1, c4, and c6, respectively [20]. 

Tool wear is a well-studied problem in the literature, and various feature extraction 

techniques have been used in conjunction with convolutional and recurrent neural networks 

in recent years. This work provides a detailed comparison of the prediction results obtained 

with the most commonly used neural architectures. In addition, relatively simple prepro-

cessing techniques and Bayesian optimization of hyperparameters are introduced to obtain  

a better overview of the capabilities of each method. The article is organized as follows: 

Section 2 discusses the proposed methodology and presents the corresponding flowchart. 

Section 3 describes the experimental data used, which correspond to the PHM 2010 data 

challenge. Section 4 briefly describes the neural network models used in this study. In 

Section 5, the results obtained are presented and discussed, with a focus on comparing them 

not only with each other but also with other relevant results in the literature. Finally, Section 6 

summarizes the conclusions. 

2. PROPOSED METHODOLOGY 

A key advantage of the present approach is that it eliminates the need for manual feature 

extraction before applying neural network models. The models are designed to process time 

series data and automatically identify relevant features for accurate predictions. As shown in 

Fig. 1, the wear prediction procedure incorporates several types of neural network models, 

including CNN, LSTM, BLSTM, and GRU. 

Before training the model, several preprocessing operations were performed. The first 

operation applied was detrending, followed by offsetting. Detrending is achieved by creating 

a new time series where each element is calculated by subtracting two consecutive elements 

in time (xt(i) – xt(i-1)). On the other hand, offsetting is done by shifting the wear curves so 

that they all start at zero. Windows of 10, 25, 50, 100 and 250 points were then used to extract 

time series that were fed into the neural networks. Four types of time series were used in total: 

raw time series, detrended time series (without trend), offset time series (with compensation), 

and detrended and offset time series (detrend + offset). 

During the training stage, Bayesian hyperparameter optimization was utilized to 

determine the optimal values for several hyperparameters. The search space included values 

for the number of neurons in layer 1 (100, 150, 200, 250, 300), layer 2 (100, 150, 200, 250, 

300), dropout rate (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8), and batch size (24, 32, 64, 128, 256, 

512). According to previous tests, 500 epochs were found to be sufficient for most cases [27]. 

Several optimizers, including rmsprop, adam, adadelta, adagrad, adamax, and nadam, were 

tested. The Bayesian hyperparameter optimization method used 50 trials. All the previous 

steps were carried out 10 times (cross validation). 
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Fig. 1. Flowchart for the proposed tool wear prediction method 

3. EXPERIMENTAL DATA 

Tool wear refers to the gradual damage and material loss on the cutting edge of a tool 

during machining operations like milling. It is usually quantified by measuring the wear on 

the tool's flank face, which is the primary wear zone. This study uses experimental data [28] 

from the 2010 PHM data challenge to predict wear in a machine tool. The data was collected 

during a dry milling operation on a high-speed CNC machine, Röders Tech RFM760.  

A 6 mm ball point tungsten carbide tool with three flanks milled a stainless-steel workpiece 

in a down mill operation [18]. Figure 2 displays a diagram of the experimental setup.  

The workpiece was prepared by removing its original coating layer, which contained hard 
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particles. The spindle speed, feed speed, and depth of cut were set to 23,600 rpm, 4.7 m/min, 

and 0.2 mm, respectively. The length of the workpiece along the feed direction was 108 mm. 

During the milling process, cutting forces were measured using a 3-axis quartz platform 

Kistler dynamometer mounted between the workpiece and the machining table. Vibration 

accelerations in all three directions were measured using three Kistler piezoelectric 

accelerometers mounted on the workpiece. Additionally, a Kistler acoustic emission (AE) 

sensor was mounted also on the workpiece to measure high-frequency stress waves.  

The outputs of these sensors were captured by a NI DAQ PCI1200 at a sampling rate  

of 50 kHz.  

 

Fig. 2. Diagram of the experimental setup 

During the tool wear test, seven time series were recorded: three for forces, three for 

vibration accelerations, and one for acoustic emission. A user-friendly graphical user interface 

(GUI) was created using the software National Instruments LabVIEW 8.2 displaying the real-

time signals from each sensor during the milling operation. The wear of each flank was 

measured off-line using a microscope LEICA MZ12 after each surface was finished (each 

surface finish corresponds to a cut number). Three cutters (c1, c4, c6) were tested in a down 

milling operation, resulting in 315 data files (one for each cut).  

4. MODELS – DEEP LEARNING 

4.1. CNN 

Convolutional Neural Networks (CNNs) were originally designed for computer vision 

tasks such as image classification [29]. Their name comes from the mathematical operation 

of convolution that they use. CNNs have since been applied to problems involving sequential 

https://paperpile.com/c/4ZDgEd/qNKEb


F.C. Zegarra et al./Journal of Machine Engineering, 2023, Vol. 23, No. 4, 122–136 127 

 

or temporal data. A key feature of CNN-based models is their ability to directly extract 

complex features from raw data. 

The time series data is fed into the convolutional layer where various convolution 

kernels or feature filters are applied to different local regions of the input to extract their 

features. These features are stored in a feature map and passed through an activation function. 

A pooling layer is then applied to reduce the dimensionality of the feature map and prevent 

overfitting. 

4.2. LSTM 

One significant variant of recurrent neural networks (RNNs) is the long short-term 

memory (LSTM) architecture. It addresses the vanishing gradient problem commonly found 

in traditional RNN models [30]. This issue makes it challenging for RNNs to retain long-term 

dependencies within a sequence. 

LSTM models use three gates to regulate the flow of information within the network: 

an input gate, a forget gate, and an output gate. These gates utilize the previous hidden state 

(ht-1) and current input (xt) at time t, along with their respective weights and biases. The 

information is then passed through sigmoid layers corresponding to each gate. The flow of 

information is calculated using the following equations: 

g𝑡 = tanh(W𝑔h𝑡−1 + U𝑔x𝑡 + b𝑔) (1) 

i𝑡 = 𝜎(W𝑖h𝑡−1 + U𝑖x𝑡 + b𝑖)  (2) 

f𝑡 = 𝜎(W𝑓h𝑡−1 + U𝑓x𝑡 + b𝑓)  (3) 

o𝑡 = 𝜎(W𝑜h𝑡−1 + U𝑜x𝑡 + b𝑜)  (4) 

c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ g𝑡  (5) 

h𝑡 = o𝑡 ⊙ tanh(c𝑡) (6) 

In an LSTM cell, gt represents the candidate hidden state, it is the input gate, ft is the 

forget gate, ot is the output gate, ct is the memory cell at time t, and ht is the hidden state at 

time t. Additionally, 𝜎 represents the sigmoid function, ⊙ denotes the element-wise product 

(Hadamard product), Ug, Ui, Uf, Uo are input weights, Wg, Wi, Wf, Wo are recurrent weights, 

and bg, bi, bf, bo are biases. 

The first step within an LSTM cell involves passing the previous hidden state (ht-1) and 

current input (xt) at time t through the forget gate's (ft) sigmoid layer. Similarly, for the input 

gate (it), (ht-1) and (xt) are passed through its corresponding sigmoid layer. The candidate 

hidden state (gt) is then calculated by passing ht-1 and xt through a tanh function. 

The forget gate (ft) controls how much of the previous cell state (ct-1) is retained or 

discarded by multiplying it with ct-1 using the ⊙ operator. This result is added to the product 

of the input gate (it) and candidate hidden state (gt) using the ⊙ operator. The cell state (ct) at 

time t is updated by forgetting some of the previous hidden state and adding some of the 

current input while modulating how much of ct-1 is kept. The output gate (ot) then regulates 

which part of ct's tanh is stored. This generates the new hidden state (ht). 
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4.3. BiLSTM 

A bi-directional long short-term memory (BiLSTM) model is composed of two LSTMs. 

The first LSTM processes the input in the forward direction while the second LSTM processes 

it in the backward direction [31]. Each LSTM has its own input, forget, and output gates.  

The model parameters for each direction are independent. Despite the increased computa-

tional cost, this model can process information from both the past and future. 

4.4. GRU 

A Gated Recurrent Unit (GRU) [32] is a simplified version of an LSTM cell that can be 

obtained by making specific modifications. In a GRU cell, the flow of information is 

controlled by gates that differ from those used in an LSTM cell. Unlike an LSTM cell, a GRU 

cell does not have an output gate. Instead, it has a reset gate (rt) that controls which part  

of the old hidden state (ht-1) will be passed to the candidate hidden state (gt), modulating how 

much of the previous hidden state will be remembered. The update gate (zt) performs the 

information management of the forget and input gates of an LSTM cell by controlling how 

much of the old hidden state (ht-1) and how much of the candidate hidden state (gt) will be 

incorporated into the new state. The flow of information is determined by the following 

equations: 

g𝑡 = tanh(W𝑔(r𝑡 ⊙h𝑡−1) + U𝑔x𝑡 + b𝑔) (7) 

z𝑡 = 𝜎(W𝑧h𝑡−1 + U𝑧x𝑡 + b𝑧)  (8) 

r𝑡 = 𝜎(W𝑟h𝑡−1 + U𝑟x𝑡 + b𝑟)  (9) 

h𝑡 = z𝑡 ⊙h𝑡−1 + (1 − z𝑡) ⊙ g𝑡 (10) 

In a GRU model, the candidate hidden state is represented by gt, the reset gate by rt, and 

the update gate by zt. The sigmoid function is represented by 𝜎 and the element-wise product 

(Hadamard product) is represented by ⊙. The hidden state at time t is represented by ht.  

The input weights are Ug, Uz, and Ur while the recurrent weights are Wg, Wz, and Wr.  

The biases are bg, bz, and br. 

A GRU model has fewer gates to update and reset when calculating a hidden state 

compared to an LSTM model. This simplicity makes the GRU faster and more efficient. 

5. RESULTS 

5.1. TIME SERIES PREPROCESSING 

To reduce processing times when training neural network models, only limited segments 

of the time series for forces (Fx, Fy, and Fz) and vibration accelerations (Ax, Ay, and Az) were 

used. These segments correspond to windows with lengths of 10, 25, 50, 100, and 250 data 
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points. Figure 3 displays the entire raw data set of force and acceleration for cut number 150 

of datasets c1, c4, and c6 in panels a and b, respectively. Panels c and d show a window  

of 100 data points in length extracted from the time series in panels a and b, respectively. 

A previous investigation [33] assessed models by extracting features from all available 

time series, including acoustic emissions. However, it was discovered that features related to 

acoustic emissions did not significantly enhance predictions, and therefore, were not selected 

among the top features. As a result, the present study has opted to omit acoustic emissions 

from the feature extraction process to minimize computational effort required for hyper-

parameter optimization. Although acoustic emissions did not improve predictions in the PHM 

2010 dataset, it is possible that they may be useful in other datasets under different conditions. 

 

Fig. 3. Raw data of forces (Fx, Fy, and Fz) and vibration accelerations (Ax, Ay, and Az) for a single cut (top) and 100 

time step windows (bottom). The data is presented for cut number 150 

Tests show that the results are consistent, regardless of where the data extraction 

windows are located. This means that windows can be taken from any point in the time series 

without significantly affecting the prediction of tool wear. For the rest of this work, windows 

from the central part of each cut will be used.  

Time series preprocessing, including detrending and offsetting, was used to create four 

data groups. The first group contains raw time series for forces and vibrations and original 

wear data (label: raw). The second group contains raw time series and offset wear data, where 

all three wear curves start at zero (label: offset). The third group includes detrended time 

series and original wear data (label: detrend). The fourth group consists of detrended time 

series and offset wear data (label: detrend + offset). To determine the best combination  

of preprocessing methods, several tests were conducted using the GRU model trained with 

time series of length 100 points. The four data groups were evaluated for three cutting tools 
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(c1, c4, and c6) using Bayesian optimization of hyperparameters. Results are shown in  

Fig. 4. The fourth group (label: detrend + offset) generally achieved lower RMSE values for 

validation data. Thus, detrend + offset preprocessing methods were applied in all subsequent 

analyses. 

 

Fig. 4. Four data groups were used to compare preprocessing methods. A GRU model was trained on windows  

with 100 time steps 

5.2. COMPARISON OF NEURAL NETWORK MODELS 

Section 4 describes the neural network models used to predict maximum wear for the 

three edges of the cutting tool. These include CNN (convolutional neural network), LSTM 

(long-short term memory), BiLSTM (bidirectional long-short term memory), and GRU (gated 

recurrent unit). The models were trained with 500 epochs and a nadam optimizer. Bayesian 

hyperparameter optimization was conducted with 50 trials. All procedures were repeated 10 

times for cross-validation. 

Figure 5 provides a comparative analysis of the neural network models using datasets 

c1, c4, and c6. The dataset used for validation is indicated by the respective results for each 

dataset. For instance, the results for dataset c1 were obtained by training the models using 

datasets c4 and c6, and validating the models using c1. Likewise, for datasets c4 and c6. All 

the models were fed with time series data, which included forces and vibrations in any of the 

three axes. These time series data were extracted from windows that had varying numbers  

of time steps (10, 25, 50, 100 or 250). 

In this study, the performance of each model was evaluated by measuring the root mean 

square error (RMSE) between the predicted and actual values. The results for each model, 

considering datasets c1, c4, and c6, are presented as boxplots in Fig. 5. Each boxplot includes 

10 data points, corresponding to the cross-validation method used. 

Upon analysing the results obtained for the CNN model, it can be observed that the c1 

dataset exhibited the lowest RMSE values (with a median of approximately 11.5). 

Furthermore, the window size that yielded the lowest RMSE was 100 time steps. As for the 

LSTM model, the lowest RMSE values were observed for c4 and c6 datasets (with medians 

of approximately 9.5), and a window size of 100 time steps also resulted in the lowest RMSE. 
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Fig. 5. Comparison of diverse neural network models (CNN, LSTM, BiLSTM and GRU) considering various window 

sizes (10, 25, 50, 100 and 250 time steps) 

Similarly, the BiLSTM model displayed the lowest RMSE values for c4 and c6 datasets 

(with medians of approximately 10), and the window size of 100 time steps proved to be 

optimal. Finally, the GRU model demonstrated the lowest RMSE values for the c6 dataset 

(with a median of around 8.5), and the window size of 100 time steps was once again optimal. 

In conclusion, based on the overall results, it can be inferred that the GRU model performed 

the best for all three datasets. 
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5.3. TOOL WEAR COMPARISON 

After analysing the results, it can be concluded that the optimal window size for 

achieving the best ones is 100 points when using the detrended time series, the offset tool 

wear, and the GRU model. To extract the hyperparameters corresponding to the first quartile 

(Q1), GRU boxplots shown in Fig. 5 were used, and the predictions were repeated 100 times 

using these hyperparameters. The resulting prediction curves for the zero quartile (Q0, lowest 

value), first quartile (Q1, corresponding to 25%), and second quartile (Q2, median) are shown 

in Fig. 6.  

It is noteworthy that the wear in the cutting tool can be characterized by three regions: 

the break-in region, where the wear increases rapidly, the steady state region, characterized 

by a plateau, and the failure region, where wear increases rapidly again. The steady state and 

fault regions are more difficult to predict for dataset c1, while the steady state region is more 

difficult to predict for dataset c4. However, the prediction is generally good for dataset c6 

since the curves practically overlap. 

 

Fig. 6. Prediction of wear curves using time series with detrend and offset, with GRU model.  

The quartiles Q0, Q1 and Q2 are shown 

The lower prediction accuracy during break-in can be improved by collecting more data 

specifically from that initial tool wear stage. This could involve dedicated cutting trials 

focused on the first few cuts, increased sampling rate in the break-in period, logging additional 

sensors, expanding the dataset with more tools exhibiting varying break-in, and synthetically 

augmenting the break-in data. With a larger, higher-resolution dataset capturing diverse 

break-in characteristics, the models can be retrained to better generalize across different 

break-in patterns and improve predictions in this transient phase. 

Furthermore, it can be observed that the prediction curve corresponding to quartile zero 

(best prediction) most closely resembles the data measured for all three datasets. 

5.4. COMPARISON WITH OTHER RESULTS IN THE LITERATURE 

Table 1 summarizes the results obtained from selected studies that used the same data 

as the present study. It is worth noting that these studies utilized various neural network 
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models to achieve their results. Notably, some of the studies achieved an RMSE of less than 

10 for all three data sets considered (c1, c4, and c6). However, it is important to emphasize 

that many of these studies only reported their best result, and thus, it is not possible to fully 

appreciate the range of variability in the results. This limitation is addressed in the present 

study through the use of boxplots. 

Table 1. Summary of the best predictions results (RMSE) obtained in selected studies 

Method 
RMSE 

c1 c4 c6 

bi-directional GRU [22] 5.4 8.3 8.2 

deep heterogeneous GRU [21] 5.009 9.581 8.66 

transformer-based neural network [18] 6.116 - 9.553 

long short-term memory [25] 12.1 10.2 18.9 

time-distributed ConvLSTM [19] 8.33 8.39 10.22 

integration of parallel convolutional neural network 

(PCNN), deep residual networks (DRN) and Bi-LSTM [26]  
7.67 7.84 8.6 

convolutional bi-directional long short-term memory [20] 10.8 8.7 9.8 

Table 2 displays the median RMSE values for the four models investigated in this study: 

CNN, LSTM, BiLSTM, and GRU. Despite utilizing the median RMSE rather than the lowest 

RMSE, the results obtained using GRU are comparable to the state-of-the-art outcomes 

summarized in Table 1. Furthermore, the relative RMSE (RRMSE), which is calculated by 

dividing the RMSE by the average wear measure, is less than 10% for the GRU model. These 

findings suggest that using only 100 time series points is sufficient to obtain results that are 

on par with the state-of-the-art outcomes. 

Table 2. Summary of the medians of predictions results (RMSE and RRMSE) obtained in this work 

Method 

RMSE (RRMSE) 

c1 c4 c6 

CNN 11.53 (10.44%) 13.15 (13.11%) 18.62 (13.93%) 

LSTM 13.33 (12.07%) 10.55 (10.52%) 10.37 (7.76%) 

BiLSTM 12.42 (11.25%) 10.41 (10.38%) 10.13 (7.58%) 

GRU 10.43 (9.45%) 9.32 (9.29%) 8.96 (6.70%) 
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5.5. APPLICABILITY OF THE METHODOLOGY PRESENTED IN OTHER CONTEXTS 

A methodology similar to the one presented in this work has also been successfully 

applied to another database, Foxconn 2020, demonstrating its adaptability in various contexts. 

The Foxconn 2020 dataset has more complex tool paths than the PHM 2010 dataset, making 

prediction more challenging in some aspects [34]. Accurate predictions are achieved through 

the use of two primary techniques: preprocessing the time series and optimizing hyperpara-

meters with Optuna. Preprocessing methods, such as detrending, help remove signal trends 

that affect both the PHM 2010 and Foxconn 2020 datasets [33]. Hyperparameter optimization 

with Optuna is crucial for improving prediction results, as it automatically searches for the 

best combination of hyperparameters that impact the performance of the machine learning 

models used. 

The proposed methodology can also handle erroneous data, such as the force in the X 

direction of the c1 in the PHM 2010 dataset (Figure 3a from [33]), which shows a deviation 

between cuts 200 and 250. The preprocessing method detrending can help correct these 

erroneous data. Additionally, another study [35] found that the Foxconn 2020 dataset also 

contains measurement errors, which detrending can address, especially for vibration data. 

However, the applicability of detrending should be evaluated on a case-by-case basis, as it 

may not be effective in all situations. 

In the PHM 2010 dataset [28], tool wear was measured directly by examining the flank 

face of the cutter under a microscope after interrupting the milling process. While accurate, 

this method is impractical for real-time monitoring in production, as it requires repeatedly 

stopping machining. Practical in-process estimation of tool wear requires indirect methods 

that can monitor changes in sensor data like forces and vibration during cutting. Although  

the wear measurements used in this study do not reflect real-world manufacturing conditions, 

the models developed provide a useful benchmark for future methods that can estimate flank 

wear in real-time from indirect sensor data. 

6. CONCLUSIONS 

This research aimed to predict the tool wear of a CNC milling machine using various 

neural network architectures, including CNN, LSTM, BiLSTM, and GRU. To optimize the 

performance of these models, the impact of two simple preprocessing techniques, detrend, 

and offset, was investigated. The results showed that implementing both preprocessing 

techniques significantly enhanced the predictions of the neural networks.  

Furthermore, the study analysed the effect of the window size of the time series used for 

the neural network training. It is worth noting that increasing the amount of data (window 

size) also increases the processing time and model complexity. The findings indicated that all 

the models studied here achieved favourable prediction results with window sizes of around 

100 data points, ensuring relatively shorter training times.  

In addition, Bayesian hyperparameter optimization was successfully utilized to deter-

mine the optimal values of three hyperparameters, namely, the number of neurons in layers 1 

and 2, as well as the batch size. The study also presented the variability of the obtained 
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predictions through boxplots, which is in contrast to other studies that only present the best-

performing value.  

Ultimately, the GRU-based model demonstrated the best performance among all the 

models studied in this research. 
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